229. Photoelectron Spectra of Vicinal Tricarbonyls by Peter Bischof, Rolf Gleiter and Peter Hofmann
 Institut für Organische Chemie der Technischen Hochachule Darmstadt and Institut für Organische Chemie der Universitat Erlangen

(30. V. 75)

Summary. The He I photoelectron spectra of tetramethylcyclopentane-1, 2, 3-trione 1, 4, 4, 6,6-tetramethylcyclohexane-1,2,3-trione 2, bicyclo[1.2.3]octane-2,3,4-trione 3, bicyclo[2.2.3]nonane-2,3,4-trione 4 and anhydrous ninhydrine 5 are presented. The assigoment of the first two bands is discussed uaing semiempirical calculations together with a qualitative band shape analysis. It is shown that the first two bands in I to 4 are due to the ionization of an electron from lone pair combinations of the $2 p$-oxygen orbitals.

While the electronic structure and the different states of α-diketones have aroused growing interest in the last ten years ${ }^{1}$) [1], investigations iof the electronic properties of tricarbonyls are sparse and mostly only qualitative basis [2] [3]. The PE. spectrum of pentane-2,3,4-trione has been reported [4] and, based on MINDO/2 calculations, a helical arrangement of the carbonyl groups was assumed with a dihedral angle of 90°. However, recent X-ray analysis [5] shows that the dihedral angle in pentane-2,3,4-trione is 120°.

By-extension of our interest in the electronic structure of α-diketones [6] we have investigated the photoelectron (PE.) spectra of several cyclic vicinal triketones in which, for steric reasons, the dihedral angles between the carbonyl groups are confined to a narrow range, which can be estimated accurately from Dreiding models. In this communication we report the PE. spectra of tetramethylcyclopentane-1,2,3-trione (1) [2], 4,4,6,6-tetramethylcyclohexane-1,2,3-trione (2) [7], bicyclo-[3.2.1]octane-2,3,4-trione (3) [8], bicyclo[3.2.2]nonane-2;3,4-trione (4) [8], and anhydrous ninhydrin (5).

1

3

20

4

2b

5

[^0]For 5, an \mathbf{X}-ray structure analysis has been reported [9]; as anticipated the molecule was found to be planar. From Dreiding models only one conformation seems likely for 1, 3 and 4. For 1 a planar molecule is anticipated; for $3\left(C_{s}\right)$ the dihedral angle between the central CO-group and those adjacent is estimated to be $\approx 25^{\circ}$; for 4 there are two OCCO dihedral angles, estimated to be 40° and 70° respectively. In the case of $\mathbf{2}$ two conformations $\mathbf{2 a}\left(C_{8}\right)$ and $\mathbf{2 b}\left(C_{2}\right)$ should have a similar energy. In 2a the six-membered ring exists in a rigid chair-conformation in which case the dihedral angle between the central CO group and those adjacent is estimated to be $\approx 50^{\circ}[10]$. In 2 b the six-membered ring has a flexible twist conformation, estimated to have a $5.5 \mathrm{kcal} / \mathrm{mol}$ higher energy than the chair form for cyclohexane [11]. In 2b, however, the interaction between the methyl groups has vanished resulting in a gain of $5.4 \mathrm{kcal} / \mathrm{mol}$ compared with 2 a , and the dihedral angle between the carbonyl groups is estimated to be $\approx 30^{\circ}[11]$.

The PE, spectra of 1, 3 and 5 are shown in Fig. 12). The first bands of $\mathbf{1}$ to 5 are correlated in Fig. 2.

At first sight it seems surprising that the first bands possess quite a similar ionization potential although the $0 . . .0$ distances range from $2.6 \AA$ to $3.1 \AA$ due to the different geometries; it indicates qualitatively that through-bond interaction is most probably dominant.

Assuming Koopmans' theorem ($-\varepsilon_{J}=I_{v, J}$) [12] molecular orbital calculations ${ }^{3}$) help to interpret the first bands of the PE. spectra. Semiempirical molecular orbital calculations of the extended Huckel (EHT) [13]4) and CNDO/2 [14] type predict that through-bond interaction [15] dominates between the p-lone pairs of the carbonyl groups [16]. This has been demonstrated for α-diketons [6] and for pentane-2,3,4trione) [4] as a representative of an open chain trione.

In Fig. 3 the interaction between the semilocalized C - $\mathrm{C} \sigma$-orbitals and the $2 p$-orbitals on the oxygen atoms is shown schematically for cyclopentane-1,2,3-trione. It is seen that through-bond interaction affects mainly the honding b_{2}-lone pair combination yielding the sequence b_{2}, a_{1}, b_{2}.

Analogous to diazabicyclo[2.2.2]octane [17] and pyrazine [18] where through-bond interaction is dominant we expect, for the first band, a shape where a higher vibrational component $v^{\prime} \leftarrow 0$ is the most intense of the progression i.e. the adiabatic ionization potential ($I_{a, j}$) is not equal to the vertical one ($I_{v, J}$). The band should have a smooth onset, due to the fact that ejection of an electron from b_{2} weakens the C -C σ-bond. In contrast to this, for the band which corresponds to the a_{1}-orbital we expect a steep onset where the $0 \leftarrow 0$ vibrational component is the most intense of the progression i.e. $I_{a, J}=I_{v, J}$. This shape should be due to the fact that ionization occurs essentially from a nonbonding orbital.

From Fig. 1 we see that the first band of all the spectra has a relatively smooth onset while the second one exhibits a steep ascent. The possible deductions from these

[^1]

Fig. 1. Photoelectron spectra of 1,3 and 5

Fig. 2. Correlation of the first bands of the PE. spectra of 1 to 5 . The dotted lines corvelate the bands which are dus to an ionization from a lone pair combination

Fig. 3. Qualitative interaction of the three lone pair combinations with the σ-orbitals of cyclopentane-1,2,3-triane
facts are supported by semiempirical calculations which predict that the orbital energy of b_{2} should be higher than that of a_{1} by at least 0.6 eV (see Table, columns 4 and 5). A key compound for the assignment of the band corresponding to the second b_{2} orbital is 5. In its PE. spectrum we observe four peaks well separated from the
region below 12 eV (see Fig. 1 and Table). From a comparison with the PE. spectra of $1-4$ the assignment of band (1) to the bonding b_{2} combination is assured.

Semiempirical calculations of the EHT and CNDO/2 type predict (see Table, column 5) that for 5 the next two orbitals to be those nearly degenerate π orbitals of the benzene ring which belong to the irreducible representations A_{2} and B_{1}. This degeneracy should give rise to two very strongly overlapping bands. Accordingly we assign the second peak in the PE. spectrum of 5 to ionizations from these two orbitals (bands (2) and (3). Our assignment of the az orbital to a lower ionization potential than the b_{1} orbital is based on simple arguments from perturbation theory as well as EHT-calculations (see Table). That bands (2) and (3) are due to the ejection of an electron from a π-orbital is supported by the PE. spectrum of benzocyclobutenedione in which two bands are observed at 10.13 eV and 10.4 eV which are close in energy to bands (3) and (3) of 5 and which are due to the ejection of an electron from the a_{2} and b_{1} orbitals [19].

Table. Compayison between observed vertical ionieation potentials of 1 to 5 with calculated orbital energies ($E H T$). For 1 to 4 the calculated orbital energies are given only for the n-orbitals. The ionization potentials in brackets are estimated. All values are given in eV.

compound	band	10.0	ordital	orntal energy	coula gravity
	©	9.00	$\mathrm{b}_{2}(\mathrm{n})$	-11.84	-13.29
	\pm	10.55	$\mathrm{a}_{1}(\mathrm{n})$	-13.14	
	(3)	11.58	${ }_{0}$		
		(12.00)	$\mathrm{b}_{8}(\mathrm{n})$	-14.90	
	(1)	9.10	$\mathrm{b}(\mathrm{n})$	-12.01	-13.18
	(2)	10.38	$a(\mathrm{n})$	-12.63	
	(1)	11.35	a		
		(12.12)	b(a)	-14.90	
	Φ	9.49	$\left.\mathrm{a}^{\prime \prime} \mathrm{n}\right)$	- 12.18	-13.29
	(2)	10.60	$\mathrm{a}^{\prime}(\mathrm{n})$	-12.89	
	(3)	11.47	$a^{*}(\mathrm{n})$	- 14.79	
	${ }^{(1)}$	12.10	σ		
	©	9.14	n	-12.09	-13.39
	*	10.60	1	-13.27	
	(3)	11.30)	σ		
		11.62)	σ		
		(11.85)	n		
	©	9.1	$\mathrm{b}_{2}(\mathrm{n})$	-12.02	-13.23
	(\%)	10.32	$a_{8}(\pi)$	-12.90	
	(10.72	$b_{1}(\pi)$	-12.93	
	(1)	10.72	$a_{1}(\underline{n})$	-13.06	
	(5)	11.87	$\mathrm{b}_{2}(\mathrm{n})$	-14.61	

Due to its steep ascent we assign band (4) of the PE. spectrum of 5 to the a_{1} orbital; this is supported by its ionization potential (10.72 eV) which is slightly lower than the ionization potential of the corresponding band of 1-4, as anticipated owing to the inductive effect of the benzene ring.

Band (5) of 5 we assign to the second b_{2} combination of the $2 p$-lone pairs on the oxygen atoms, based on semiempirical calculations and on the assumption that the MO's corresponding to the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds should be lower in energy in 5 than in the triketones $1-4$ and also lower than the highest σ-MO in benzene (11.5 eV) [20].

Assuming that the center of gravity of the three lone pair combinations on the oxygen atoms in 1-5 stays approximately constant we obtain from 5 a value: $(9.10+10.72+11.87): 3=10.56 \mathrm{eV}$. This assumption is corroborated by the EHTcalculations, shown in the Table, column 6, which yield for the third n-orbital of 3 an ionization potential 11.6 eV , which is close to the value obtained for the third band (11.47 eV). For compound 1,2 and 4, however, the band corresponding to the ionization from the third n-orbital is predicted by this assumption to be overlapped by $\boldsymbol{\sigma}$-orbitals; the approximate position of the former is indicated by broken bars in Fig. 2.

Wo thank the Fonds der Chomischen Industric and the Otto Rothm Gedächtnisstiftung for financial support.

BIBLIOGRAPHY

[1] J.F. Armett, G. Nswkome, W.L. Mattice \& S. P. McGlynn, J. Amer. chem. Soc. 96, 4385 (1974); J. C. D. Brand \& W.-H. Mau, ibid. 96, 4380 (1974). M. Rubin, Chem. Rev. 75, 177 (1975),
[2] C. W. Shoppee, J. chem. Soc. 1936, 269.
[3] L. Horwer \& F. Maurer, Liebigs Ann. Chem. 736, 145 (1970) ; C. W. Shoppee, J. chem. Soc. 1972, 3015.
[4] J. Kromet \& W. Strack, Angew. Chem. 84, 210 (1972); Angew. Chem. Int. Ed. 11; 220 (1972).
[5] M, Rubin, private communication.
[6] D. O. Cowan, R. Gleiter, J. A. Hashmall, E. Heilbronner \& V. Hornumg, Angew. Chem. 83, 405 (1971), Angew. Chem. Int. Ed. 10, 401 (1971) ; J. Keldar, H. Cerfontain, B. R. Higginson \& D. R. Lloyd, Tetrahedron Letters 7974, 739.
[7] G. Hesse \& P. Beyer, Liebigs Ann. Chem. 747, 84 (1971); G. Hesse \& P. Hofmome, to be published.
[8] K. Alder \& R. Reubke, Chem. Ber, 91, 1525 (1958).
[9] W. Botton, Acta crystallogr. (8, 5 (1965).
[10] W. Marsh \& J, Dunitz, Helv. 58, 707 (1975).
[11] E. L. Eliel, 'Stereochemistry of Carbon Compounds', McGraw-Hill, New York 1962.
[12] T. Koopmatrs, Physica 1, 104 (1934).
[13] R. Hoffmann, J. chem. Physics 39, 1397 (1963); R. Moffmann \& W. N. Lipscomb, ibid. 36, 2179, 3489 (1962); 37, 2872 (1962).
[14] J. A. Pople \& D. L. Beveridge, 'Approximate Molecular Orbital Theory', McGraw-Hill, New York, N.Y. 1970 and references therein.
[15] R. Hoffmann, A. Imamuwa \& W. J. Hehre, J. Amer, chem. Soc. 90, 1499 (1968) ; R. Hoffmann, Accounts chem. Res. 4, 1 (1971); R. Gleiter, Angew, Chem. 86, 770 (1974), Angew. Chern. Int. Ed. 13, 696 (1974); E. Heilbrowner \& A. Schmelaer, Kelv. 58, 936 (1975).
[16] J. R. Swewson \& R. Hoffmann, Helv. 53, 2331 (1970).
[17] E. Heilbronter \& K. A. Muszhat, J. Amer. chem. Soc. 92, 3818 (1970).
[18] R. Glestey, E. Heilbronner \& V. Hornung, Helv. 55, 255 (1972) and references therein; K. A. Musz\&at \& J. Schaublin, Chom. Physics Letters 13, 301 (1972).
[19] P. Bischof \& R. Gleiter, unpublished results.
[20] L. Asbrint, O. Edquist, E. Lindholm \& L. E. Sslin, Chem. Physics Letters 5, 192 (1970).

[^0]: ${ }^{1}$) For more important referencos see [1].

[^1]: ${ }^{2}$) The PE. spectra were measured on a PS 18 Photoclectron Spectrometer (Perhin-Elmer Ltd., Beaconsfield, England).
 ${ }^{\text {a }}$) For the molecular orbital calculations we assumed the following bond lengths: $\mathrm{C}-\mathrm{C}=1.50 \AA$, $\mathrm{C}-\mathrm{C}=1.40 \AA, \mathrm{C}-\mathrm{H}=1.10 \AA, \mathrm{C}=\mathrm{O}=1.22 \mathrm{~A}$. The spacial arrangement of the centers was taken from Dreiding models.
 ${ }^{4}$) The Slater exponent for hydrogen used was 1.3.

